12 research outputs found

    miRNAs Regulate Cytokine Secretion Induced by Phosphorylated S100A8/A9 in Neutrophils.

    Get PDF
    The release of cytokines by neutrophils constitutes an essential process in the development of inflammation by recruiting and activating additional cells. Neutrophils are also able to secrete a complex of S100A8 and S100A9 proteins (S100A8/A9), which can amplify the general inflammatory state of the host and is involved in the pathogenesis of several chronic inflammatory diseases, such as rheumatoid arthritis (RA). S100A8/A9 have received renewed attention due to their susceptibility to several function-altering post-translational modifications. In that context, it has been recently demonstrated that only the phosphorylated form of S100A8/A9 (S100A8/A9-P) is able to induce the secretion of several cytokines in neutrophils. Here, we investigate the mechanism by which this post-translational modification of S100A8/A9 can regulate the extracellular activity of the protein complex and its impact on the inflammatory functions of neutrophils. We found that S100A8/A9-P are present in large amounts in the synovial fluids from RA patients, highlighting the importance of this form of S100A8/A9 complex in the inflammation process. Using miRNA-sequencing on S100A8/A9-P-stimulated differentiated HL-60 cells, we identified a dysregulation of miR-146a-5p and miR-155-5p expression through TRL4 signaling pathways. Our data reveal that overexpression of these miRNAs in neutrophil-like cells reduces S100A8/A9-P-mediated secretion of pro-inflammatory cytokines

    miRNA-132-5p mediates a negative feedback regulation of IL-8 secretion through S100A8/A9 downregulation in neutrophil-like HL-60 cells

    Get PDF
    BackgroundNeutrophils are an important source of pro-inflammatory and immunomodulatory cytokines. This makes neutrophils efficient drivers of interactions with immune and non-immune cells to maintain homeostasis and modulate the inflammatory process by notably regulating the release of cytokines. Ca2+-dependent regulatory mechanism encompassing cytokine secretion by neutrophils are not still identified. In this context, we propose to define new insights on the role of Ca2+-binding proteins S100A8/A9 and on the regulatory role of miRNA-132-5p, which was identified as a regulator of S100A8/A9 expression, on IL-8 secretion.MethodsDifferentiated HL-60 cells, a human promyelocytic leukemia cell line that can be induced to differentiate into neutrophil-like cells, were used as a model of human neutrophils and treated with N- formyl-methionyl-leucyl-phenylalanine (fMLF), a bacterial peptide that activates neutrophils. shRNA knockdown was used to define the role of selected targets (S100A8/A9 and miRNA-132-5p) on IL-8 secretion.Results and discussionDifferent types of cytokines engage different signaling pathways in the secretion process. IL-8 release is tightly regulated by Ca2+ binding proteins S100A8/A9. miRNA-132-5p is up-regulated over time upon fMLF stimulation and decreases S100A8/A9 expression and IL-8 secretion.ConclusionThese findings reveal a novel regulatory loop involving S100A8/A9 and miRNA-132-5p that modulates IL-8 secretion by neutrophils in inflammatory conditions. This loop could be a potential target for therapeutic intervention in inflammatory diseases.</jats:sec

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Calcium signaling and regulation of neutrophil functions: Still a long way to go.

    No full text
    Neutrophils are the most abundant leukocytes in blood and disruption in their functions often results in an increased risk of serious infections and inflammatory autoimmune diseases. Following recent discoveries in their influence over disease progression, a resurgence of interest for neutrophil biology has taken place. The multitude of signaling pathways activated by the engagement of numerous types of receptors, with which neutrophils are endowed, reflects the functional complexity of these cells. It is therefore not surprising that there remains a huge lack in the understanding of molecular mechanisms underlining neutrophil functions. Moreover, studies on neutrophils are undoubtedly limited by the difficulty to efficiently edit the cell's genome. Over the past 30 years, compelling evidence has clearly highlighted that Ca(2+) -signaling is governing the key processes associated with neutrophil functions. The confirmation of the role of an elevation of intracellular Ca(2+) concentration has come from studies on NADPH oxidase activation and phagocytosis. In this review, we give an overview and update of our current knowledge on the role of Ca(2+) mobilization in the regulation of pro-inflammatory functions of neutrophils. In particular, we stress the importance of Ca(2+) in the formation of NETs and cytokine secretion in the light of newest findings. This will allow us to embrace how much further we have to go to understand the complex dynamics of Ca(2+) -dependent mechanisms in order to gain more insights into the role of neutrophils in the pathogenesis of inflammatory diseases. The potential for therapeutics to regulate the neutrophil functions, such as Ca(2+) influx inhibitors to prevent autoimmune and chronic inflammatory diseases, has been discussed in the last part of the review

    Regulation of neutrophil pro-inflammatory functions sheds new light on the pathogenesis of rheumatoid arthritis.

    No full text
    For more than two centuries now, rheumatoid arthritis (RA) is under investigation intending to discover successful treatment. Despite decades of scientific advances, RA is still representing a challenge for contemporary medicine. Current drug therapies allow to improve significantly the quality of life of RA patients; however, they are still insufficient to reverse tissue injury and are often generating side-effects. The difficulty arises from the considerable fluctuation of the clinical course of RA among patients, making the predictive prognosis difficult. More and more studies underline the profound influence of the neutrophil multifaceted functions in the pathogenesis of RA. This renewed interest in the complexity of neutrophil functions in RA offers new exciting opportunities for valuable therapeutic targets as well as for safe and well-tolerated RA treatments. In this review, we aim to update the recent findings on the multiple facets of neutrophils in RA, in particular their impact in promoting the RA-based inflammation through the release of the cytokine-like S100A8/A9 protein complex, as well as the importance of NETosis in the disease progression and development. Furthermore, we delve into the complex question of neutrophil heterogeneity and plasticity and discuss the emerging role of miRNAs and epigenetic markers influencing the inflammatory response of neutrophils in RA and how they could constitute the starting point for novel attractive targets in RA therapy

    Specific distribution of gabarap, gec1/gabarap Like 1, gate16/gabarap Like 2, lc3 messenger RNAs in rat brain areas by quantitative real-time PCR.

    No full text
    International audienceGABARAP and GEC1/GABARAPL1 interact with tubulin and GABA(A) receptor and belong to a new protein family. This family includes GATE 16 and LC3, potentially involved in intracellular transport processes. In this study, we combined brain dissection and quantitative real-time reverse transcription polymerase chain reaction to study discriminatively gabarap, gec1/gabarapL1, gate16/gabarapL2, lc3 mRNA distribution in multiple rat brain areas

    Role of S100A8/A9 for Cytokine Secretion, Revealed in Neutrophils Derived from ER-Hoxb8 Progenitors

    No full text
    S100A9, a Ca2+-binding protein, is tightly associated to neutrophil pro-inflammatory functions when forming a heterodimer with its S100A8 partner. Upon secretion into the extracellular environment, these proteins behave like damage-associated molecular pattern molecules, which actively participate in the amplification of the inflammation process by recruitment and activation of pro-inflammatory cells. Intracellular functions have also been attributed to the S100A8/A9 complex, notably its ability to regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. However, the complete functional spectrum of S100A8/A9 at the intracellular level is far from being understood. In this context, we here investigated the possibility that the absence of intracellular S100A8/A9 is involved in cytokine secretion. To overcome the difficulty of genetically modifying neutrophils, we used murine neutrophils derived from wild-type and S100A9-/- Hoxb8 immortalized myeloid progenitors. After confirming that differentiated Hoxb8 neutrophil-like cells are a suitable model to study neutrophil functions, our data show that absence of S100A8/A9 led to a dysregulation of cytokine secretion after lipopolysaccharide (LPS) stimulation. Furthermore, we demonstrate that S100A8/A9-induced cytokine secretion was regulated by the nuclear factor kappa B (NF-κB) pathway. These results were confirmed in human differentiated HL-60 cells, in which S100A9 was inhibited by shRNAs. Finally, our results indicate that the degranulation process could be involved in the regulation of cytokine secretion by S100A8/A9

    Secretion of the Phosphorylated Form of S100A9 from Neutrophils Is Essential for the Proinflammatory Functions of Extracellular S100A8/A9.

    No full text
    S100A8 and S100A9 are members of the S100 family of cytoplasmic EF-hand Ca(2+)-binding proteins and are abundantly expressed in the cytosol of neutrophils. In addition to their intracellular roles, S100A8/A9 can be secreted in the extracellular environment and are considered as alarmins able to amplify the inflammatory response. The intracellular activity of S100A8/A9 was shown to be regulated by S100A9 phosphorylation, but the importance of this phosphorylation on the extracellular activity of S100A8/A9 has not yet been extensively studied. Our work focuses on the impact of the phosphorylation state of secreted S100A9 on the proinflammatory function of neutrophils. In a first step, we characterized the secretion of S100A8/A9 in different stimulatory conditions and investigated the phosphorylation state of secreted S100A9. Our results on neutrophil-like differentiated HL-60 (dHL-60) cells and purified human neutrophils showed a time-dependent secretion of S100A8/A9 when induced by phorbol 12-myristoyl 13-acetate and this secreted S100A9 was found in a phosphorylated form. Second, we evaluated the impact of this phosphorylation on proinflammatory cytokine expression and secretion in dHL-60 cells. Time course experiments with purified unphosphorylated or phosphorylated S100A8/A9 were performed and the expression and secretion levels of interleukin (IL)-1alpha, IL-1beta, IL-6, tumor necrosis factor alpha, CCL2, CCL3, CCL4, and CXCL8 were measured by real-time PCR and cytometry bead array, respectively. Our results demonstrate that only the phosphorylated form of the complex induces proinflammatory cytokine expression and secretion. For the first time, we provide evidence that S100A8/PhosphoS100A9 is inducing cytokine secretion through toll-like receptor 4 signaling

    Specific regional distribution of gec1 mRNAs in adult rat central nervous system.

    No full text
    International audienceGEC1 protein shares high identity with GABARAP (GABA(A) Receptor-Associated Protein), interacts with tubulin and GABA(A) receptors and is potentially involved in intracellular transport processes. Recently, using quantitative real time PCR, we have reported the gec1 mRNA expression in different rat brain areas. In the present study, we investigated the cell types expressing gec1 in rat brain. Sense and anti-sense gec1 RNA probes, corresponding to the 3'-untranslated region, were generated. In northern blotting experiments, the anti-sense probe revealed only the 1.75 kb gec1 mRNAs. On the other hand, in immunohistochemistry experiments, GEC1 polyclonal antibodies did not discriminate between GEC1 and GABARAP proteins. Therefore, we used digoxigenin-labeled RNA probes for in situ hybridization (ISH) experiments to map the gec1 expression. Using the anti-sense probe, we detected the gec1 mRNAs specifically in neurons throughout the rostrocaudal extent of the brain as well as in the spinal cord. Although a majority of neurons expressed the gec1 mRNAs, different intensities of labeling were observed depending on the areas: the strongest labeling was observed in the isocortex, hippocampus, basal telencephalon, some thalamic and most of hypothalamic nuclei, cerebellum, and numerous brainstem nuclei. Furthermore, the gec1 mRNAs were intensely expressed in neurons involved in somatomotor and neuroendocrine functions and weakly expressed in sensory and reticular structures. These results corroborate the putative role of the GEC1 protein in the trafficking of receptor GABA(A)

    Secretion of the Phosphorylated Form of S100A9 from Neutrophils Is Essential for the Proinflammatory Functions of Extracellular S100A8/A9

    No full text
    S100A8 and S100A9 are members of the S100 family of cytoplasmic EF-hand Ca2+-binding proteins and are abundantly expressed in the cytosol of neutrophils. In addition to their intracellular roles, S100A8/A9 can be secreted in the extracellular environment and are considered as alarmins able to amplify the inflammatory response. The intracellular activity of S100A8/A9 was shown to be regulated by S100A9 phosphorylation, but the importance of this phosphorylation on the extracellular activity of S100A8/A9 has not yet been extensively studied. Our work focuses on the impact of the phosphorylation state of secreted S100A9 on the proinflammatory function of neutrophils. In a first step, we characterized the secretion of S100A8/A9 in different stimulatory conditions and investigated the phosphorylation state of secreted S100A9. Our results on neutrophil-like differentiated HL-60 (dHL-60) cells and purified human neutrophils showed a time-dependent secretion of S100A8/A9 when induced by phorbol 12-myristoyl 13-acetate and this secreted S100A9 was found in a phosphorylated form. Second, we evaluated the impact of this phosphorylation on proinflammatory cytokine expression and secretion in dHL-60 cells. Time course experiments with purified unphosphorylated or phosphorylated S100A8/A9 were performed and the expression and secretion levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor alpha, CCL2, CCL3, CCL4, and CXCL8 were measured by real-time PCR and cytometry bead array, respectively. Our results demonstrate that only the phosphorylated form of the complex induces proinflammatory cytokine expression and secretion. For the first time, we provide evidence that S100A8/PhosphoS100A9 is inducing cytokine secretion through toll-like receptor 4 signaling
    corecore